US009423964B1

a2z United States Patent (10) Patent No.: US 9,423,964 B1
Randall et al. 45) Date of Patent: *Aug. 23,2016
(54) DATA TRANSFORMATION DURING 2006/0232826 Al* 10/2006 Bar-El GOGF 21/6218
RECYCLING 358/403
2008/0244158 Al* 10/2008 Funatsu GOGF 12/0804
. 711/100

(71) Applicant: NETAPP, INC., Sunnyvale, CA (US) 2011/0238857 Al 02011 Certain cf al.
2013/0060992 Al1* 3/2013 Cho ...cccceveveenn GOGF 12/0246
(72) Inventors: Charles Randall, Boulder, CO (US); 711/103
David D. Wright, Boulder, CO (US); 2013/0166861 Al1* 6/2013 Takano ... GOG6F 3/0608
Michael Xu, Boulder, CO (US) 711/161
2014/0013068 Al* 12014 Yamato GOG6F 3/0608
. 711/154
(73) Assignee: NETAPP, INC., Sunnyvale, CA (US) 2014/0215170 Al* 7/2014 Scarpino GOG6F 3/0608
711/161
(*) Notice: Subject to any disclaimer, the term of this 2014/0244962 Al* 8/2014 Arges ..o GO6F 12/023
patent is extended or adjusted under 35 O15/0106556 AL* 472015 i G06F7é /10/ é(7)51§

L PPN
U.S.C. 154(b) by O days. 711103
ThlS patent is Subject to a tenninal dis_ 2015/0378613 Al* 12/2015 Kosekicooone.n. GO6F 3/0608
claimer. 711/103
OTHER PUBLICATIONS

(21) Appl. No.: 14/941,938
(22) Filed: Now. 16, 2015

Related U.S. Application Data
(63) Continuation of application No. 14/932.063, filed on

Nov. 4, 2015.
(51) Int.CL
GOGF 12/00 (2006.01)
GOGF 13/00 (2006.01)
GOGF 3/06 (2006.01)
(52) US.CL
CPC oo GOGF 3/0608 (2013.01); GOGF 3/064

(2013.01); GOGF 3/0673 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,604,155 Bl
2003/0028642 Al

8/2003 Chong, Jr.

2/2003 Agarwal et al.

2004/0107281 Al 6/2004 Boseetal.

2004/0133622 Al 7/2004 Clubb et al.

2005/0246362 Al* 11/2005 Borland GOGF 17/30067

Non-Final Office Action received for U.S. Appl. No. 14/932,063

mailed Jan. 26, 2016, 9 pages.
Notice of Allowance in U.S. Appl. No. 14/932063 mailed May 4,
2016 (7 pages).

* cited by examiner

Primary Examiner — Sean D Rossiter
(74) Attorney, Agent, or Firm — Foley & Lardner LLP

(57) ABSTRACT

Disclosed are systems, computer-readable mediums, and
methods for transforming data in a file system. As part of a
recycling process, a determination is made that transforma-
tions should be attempted. A data block is determined to be in
use by at least one user of the storage system. If a transfor-
mation should be attempted on the data block is determined.
Parameters associated with the performance of the file system
can be used in this determination. A type of transformation to
be done is determined. The data block is transformed based
upon the selected transformation. The transformed data block
is written to the storage system. As part of the recycling
process, the transformation requires no additional input/out-
put requests.

20 Claims, 5 Drawing Sheets

9
Commit Transformed Data
o Storage

US 9,423,964 B1

Sheet 1 of 5

Aug. 23, 2016

U.S. Patent

)
290}
:

T 'Old
qzo} ez0l
Al
[
q90}
7 7 i
S < << < < < < < < < <
0kl upoL oy Bp0L 0EL 0L 0L 0ZL PYOL %0l qar0l By0l

U.S. Patent Aug. 23,2016 Sheet 2 of 5 US 9,423,964 B1

| |
Ve Ve
g S/
-~ -~
s/
I
< m
Y ~
g L
U] bl Ll
L
Ll
3\ L
N b
Q
3 o
L
Ll
2/
e a a
Q Q
o o
< <

US 9,423,964 B1

Sheet 3 of 5

Aug. 23, 2016

U.S. Patent

J€'DId
ssn asnlesn
] ur ur-up H 9 a
0N 4 10N-{- 10N
< < < <
0S1L 0zL 0¥l o€l
g€ 'Old
asn19asn asn | asn
1 H w9 ur- 3 ul a
JON | I0N 10N | 10N
K< S < S
(174" 0s1 ovl 0cl
V€ 'O
asn
1 H 5] tH d
10N
2 Z Z
ocl 0S1 oyl ¢l

U.S. Patent Aug. 23,2016 Sheet 4 of 5 US 9,423,964 B1

400 402
Receive Data
404 y
Initial Transform Data
406 Y
Replicate Transformed
Data
408 h 4
410
Commit Transformed Data Commit Transformed Data
to Storage to Storage
412 r
Acknowledge Write
Succeeded
414 y
2
Recyle
416 \ 4

Transformation Process

FIG. 4

U.S. Patent Aug. 23,2016 Sheet 5 of 5 US 9,423,964 B1

500 502
2.
Determine transformation should be
attempted
504 \ 4
Determine data block is in use
506
Determine transformation of data
block is heeded
508
Determine transformation
510 y
e
Transform data block
512 y
2]

Write data block
FIG.5

US 9,423,964 B1

1
DATA TRANSFORMATION DURING
RECYCLING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. Non-Provisional
application Ser. No. 14/932,063, filed Nov. 4, 2015, the con-
tents of which are incorporated by reference in its entirety into
the present disclosure.

BACKGROUND

The following description is provided to assist the under-
standing of the reader. None of the information provided is
admitted to be prior art.

Log-structured file systems were created to increase write
throughput, especially for small random writes. To reduce
disk access times, data writes are done sequentially. Data
writes can also be queued together, such that multiple data
blocks are written sequentially during a single write. As data
is written sequentially, overwriting existing data results in
both the new data and the old data being stored. To reclaim
additional storage space, unused data blocks can be reclaimed
through recycling or a combination of recycling and garbage
collection.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present disclosure
will become more fully apparent from the following descrip-
tion and appended claims, taken in conjunction with the
accompanying drawings.

FIG. 1 depicts storage used in a log-structured file system
in accordance with an illustrative implementation.

FIG. 2A illustrates a log-structured file system with stored
data in accordance with an illustrative implementation.

FIG. 2B illustrates the results of a recycling process in
accordance with an illustrative implementation.

FIGS. 3A-3C illustrate using a garbage collection process
in combination with a recycling process in accordance with
an illustrated implementation.

FIG. 4 illustrates a write /O request in accordance with
various implementations.

FIG. 5 illustrates a flow diagram of a transformation pro-
cess in accordance with various implementations.

DETAILED DESCRIPTION
Overview

In general, one innovative aspect of the subject matter
described below can be embodied in methods for transforma-
tion of data blocks stored in a storage system, using one or
more electronic processors. A determination is made that
transformations should be attempted. A data block is deter-
mined to be in use by at least one user of the storage system.
Determine that a transformation should be attempted on the
data block. A transformation of the data block is determined.
The data block is transformed based upon the selected trans-
formation. Write the transformed data block to the storage
system. Other implementations of this aspect include corre-
sponding systems, apparatuses, and computer-readable
media, configured to perform the actions of the method.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, implementations, and features described above,

10

15

20

25

30

35

40

45

50

55

60

65

2

further aspects, implementations, and features will become
apparent by reference to the following drawings and the
detailed description.

DETAILED DESCRIPTION

Described herein are techniques for a file system that
includes the ability to transform data already stored in the
log-structured file system during normal operation of the log
structured file system. For example, during recycling, in a
log-structured file system, stored data that is being moved can
be transformed. Data can be compressed, decompressed,
encrypted, decrypted, format changed, etc. Data can also be
recompressed. For example, data can be stored in a com-
pressed format using a particular compression algorithm.
During recompression, the data can be uncompressed and
compressed using a different algorithm. Recompression can
be used when as part of the initial writing of data uses a fast
compression algorithm. During recompression, the data can
be compressed with a slower algorithm that likely compresses
the data more than the initial algorithm. As the transformation
occurs during the normal operation of the log-structured file
system, no additional I/O operations are incurred. Thus, the
transformations can be done efficiently compared to other
methods of transformation that incur I/O requests specifically
as part of the transformation process. For example, recom-
pressing, compression of, or encryption of all stored data
independent of a process such as recycling would incur both
read and write I/O requests when the data is read and then
written back to storage. The current inventions described
below do not require any additional /O requests compared to
the normal operation of the log-structured file system. Fur-
ther, the transformation can allow a storage system to run
more efficiently. For example, data can initially be written
without any compression. This allows the data to be written to
storage faster as no time is spent compressing the data prior to
the data write. During normal operation of the file system, the
data can be compressed and stored. The end user will not
notice this compression and storage since it is part of the file
system and the user would not be currently writing the data
that is being compressed. Thus, the file system has the benefit
of compressed data but with no delays during the initial write.
The end user, therefore, sees faster data writes but also even-
tually gets the benefit of compressed data. In the following
description, for purposes of explanation, numerous examples
and specific details are set forth in order to provide a thorough
understanding of various implementations. Particular imple-
mentations as defined by the claims may include some or all
of'the features in these examples alone or in combination with
other features described below, and may further include
modifications and equivalents of the features and concepts
described herein.

FIG. 1 depicts storage 110 used in a log-structured file
system in accordance with an illustrative implementation. In
one implementation, the storage 110 is a single solid state
drive. The storage 110 is broken down into multiple regions or
segment files, 102a and 1025. The size of the regions can be
identical for the storage. The number of regions can be con-
figured when the storage is initially configured or reconfig-
ured at a later time. As an example, 1 terabyte (TB) storage
can include ten 102.4 gigabyte regions. Alternatively, the
same 1 TB storage could be broken into forty 250 megabyte
regions. In other implementations, the regions can be of vary-
ing sizes.

Each region is further divided into segments, 104a-104/.
Data is written into the appropriate segment when data is
flushed to storage. To determine where to write data, a write

US 9,423,964 B1

3

pointer 130 is used. The write pointer points to the next
position of the storage 110 that will be written to. A corre-
sponding read pointer 120 is also used. The read pointer
points to the where the data starts in the storage 110. Because
data is written in a sequential manner consecutively through
the storage 110, the start of the stored data can be anywhere
within the storage. Both the read pointer and the write pointer
are used during garbage collection or recycling that recap-
tures storage space of deleted data.

In various implementations, data is not shared across end
users. That is, data belongs to a single end user, such that
when the end user deletes data no other end user is currently
using that data. In other implementations, data is shared
across end users. In these implementations, when two users
write the same block of data, the data is deduplicated such that
only one block of data is written to storage.

Each region can include a checkpoint, 106a and 1065, and
a header (not shown). The header can include a sequence
number that can be used to determine the last segment file that
the file system wrote to the storage system. This can be used
during start-up of the file system. The checkpoint has a list of
user files and metadata associated with the user files. Meta-
data for example can include data such as the filename, cre-
ated time, last accessed time, last written time, size, etc. In
addition, each file has a list of branches. Initially, a file has
only a single branch. As the file is manipulated, one or more
branches can be created.

To decrease write amplification, e.g., the actual amount of
data written when data is written, a pointer structure can be
used to identify the data contents of the file. Write amplifica-
tion can be an issue when a system must write data, such as
metadata, in addition to the actual data being written. For
example, if 4 kilobytes (KB) of data is to be written, but to do
so the file system requires 8 KB of metadata to be written,
each write costs 3x the amount of data being written. Any file
system has some overhead as some metadata must be written
to keep track of the file contents and related data.

As described above, the described log-structured file sys-
tem writes data continuously from the beginning of storage to
the end of the storage. As data is deleted, the data is not erased
from storage. Rather, an indication that the data has been
deleted is written, but the actual data remains on the disk.
Eventually, this deleted data must be recaptured so that addi-
tional data can be written to storage. This is accomplished
with a process referred to as recycling. Recycling can occur at
various times. As one example, recycling can occur at sched-
uled times. As another example, recycling can be done each
time a segment is written, each time a new region is written to,
or based upon the distance between the read pointer and the
write pointer. In various implementations, the file system
maintains a recycle pointer 140, as shown in FIG. 1.

The data starting the write pointer 130 up to the recycle
pointer 140 is the amount of known free space that is available
for writing new data. No user data is stored between the write
pointer 130 and the recycle pointer 140. The rest of the data in
the file system, e.g. from the recycle pointer 140 to the write
pointer 130 includes data that may still be in use or may no
longer be in use by any user of the storage system.

As noted above, when a user deletes data, metadata asso-
ciated with the data can indicate that the data is no longer in
use. This deleted data needs to be recaptured for writing. The
distance between the write pointer 130 and the recycle pointer
140 indicates the known amount of free storage that can be
written. Recycling can occur at various times. When the dis-
tance between the write pointer 130 and the recycle pointer
140 falls below a predetermined threshold, e.g., 100 MB, 250
MB, size of the segment file, 10% of the size of a region, etc.,

10

15

20

25

30

35

40

45

50

55

60

65

4

the recycling process can be triggered to reclaim deleted data.
Other examples include, each time a segment is written, each
time a new region is written to, or based upon the distance
between the read pointer and the write pointer.

FIG. 2A illustrates a log-structured file system with stored
data. Data blocks A-L each stores data that is being used by at
least one user. Blocks 120 are data blocks that have been
deleted such that no user is using the data stored in those data
blocks. Recycling can begin once the distance between the
write pointer 130 and the recycle pointer 140 is determined to
be less than a predetermined distance. FI1G. 2B illustrates the
results of a recycling process. The recycling process starts at
the recycling pointer 140 and reads a number of data blocks.
The maximum number of data blocks that can be read are
those up to the write pointer 130. For large amounts of stor-
age, the number of blocks between the recycling pointer 140
and the write pointer 130 would require too much time for
recycling to complete. Accordingly, for these systems some
smaller number of data blocks is examined. Each data block
is determined to be either in use or not in use by an end user.

Inimplementations where data is not shared between users,
a simple deleted flag can be used to indicate that the end user
has deleted a block of data. In other file systems, data blocks
can be shared across multiple end users. In these file systems,
one user deleting a data block no longer means that the data
block is no longer in use, as another end user could still be
using the data block. During recycling, metadata associated
with the data block, e.g., a block identifier, can be used to
determine if the data block is still in use by any end user. For
example, the block identifier can be used to query a data
structure that indicates if the data block is still being used

If'the data block is in use the data block is read and written
at the write pointer 130. The write pointer 130 is then updated
to point to the next data block. For example, in FIGS. 2A and
2B data blocks E, F, G, and H are in use. When block E is
examined, the block is determined to be in use. The recycle
process then reads block E and writes block E at the location
of'the write pointer 130. The write pointer 130 is then updated
to point to the data block after block E. The recycle pointer
140 is also updated to point to the block after block D’s
original position. Before block E is written, block E can be
transformed. For example, block E can be compressed,
encrypted, etc. Specific examples are further detailed below.
The recycle process reads and moves blocks F, G, and H
accordingly as well. Any block that is not in use is simply
ignored and the recycle pointer 140 is updated. After recy-
cling, both the write pointer 130 and the recycle pointer 140
have been updated and the free space between these pointers
has been increased. The increased space can be seen in FIG.
2B.

In some implementations, the operations to determine
what data blocks are in use can be done independently of the
recycling process. The operations that determine what data
blocks are in use is referred to as garbage collection. Sepa-
rating garbage collection from recycling is useful when the
multiple users can share a data block and the operations used
to determine if a data block is in use are more complicated
than simply reading an in-use indicator. The garbage collec-
tion process analyzes data blocks, determines if they are in
use, and then updates an in-use indicator accordingly. The
recycling process, therefore, can be simplified in these
embodiments simply to read the in-use indicator to determine
if a data block needs to be removed and can be safely over-
written.

FIGS. 3A-3C illustrate using a garbage collection process
in combination with arecycling process. A garbage collection
pointer 150 is used to indicate that the blocks between the

US 9,423,964 B1

5

recycle pointer 140 and the garbage collection pointer 150
have been determined to be either in use or not in use. The
garbage collection process can be triggered when the distance
between the recycle pointer 140 and the garbage collection
pointer 150 is below a predetermined threshold, e.g., 100 MB,
50% the size of a segment, 25% the size of a region, etc. FIG.
3A illustrates a file system prior to the garbage collection
process being done, while FIG. 3B illustrates the results of the
garbage collection process.

During garbage collection, a data block is examined to
determine if it is in use. This can be done exactly as described
above during the recycling process. Some indicator, suchas a
deleted or in-use indicator, can be updated accordingly. For
example, in FIGS. 3A and 3B an in-use indicator is set based
upon determining if a data block is being used by any user of
the file system. Conversely, a deleted block identifier can be
used to indicate that the data block is no longer in use. For
example, when garbage collection begins, the number of
blocks to examine can be determined. The number of blocks
can be a predetermined number of blocks, a number of blocks
in a region, a number of blocks in a segment, a number of
blocks needed to increase the distance between the recycle
pointer 140 and the garbage collection pointer 150 to a pre-
determined distance, etc. Each of these blocks can have a
deleted indicator set to true. Then the garbage collection
process can run through each data block that is currently
stored on the storage device. For example, metadata repre-
senting the files, data, etc., stored on the storage can be tra-
versed. For each block in the blocks being examined that is
being used, the deleted indicator can be set to false. After
traversing the metadata, any data block with its deleted indi-
cator still set is known to be no longer in use and can be
deleted. At the end of the garbage collection process, the
garbage collection pointer 150 is updated accordingly, as
shown in FIG. 3B. At a later time, the recycling process can
begin. As the garbage collection process has already updated
the in-use/deleted indicator, the recycling process can simply
examine the indicator to determine if a data block is required
to be moved. FIG. 3C shows the results of a recycling process
as described above after the garbage collection process has
completed.

FIG. 4 illustrates a write /O request in accordance with
various implementations. A write request is received from an
end user to write data (402). The data can be divided into
multiple data blocks. For simplicity, a single data block write
is described. An identifier associated with the data block is
determined. For example, a hash ofthe data block can be used
as its identifier. The data block can then be transformed (404).
This transformation is an optional step or can involve multiple
transformations. The data is then stored. Once stored, the
write is acknowledged to the end user as complete. In some
implementations, the data can be replicated to one or more
separate storage devices (406). In these implementations, the
data block is sent to the one or more storage devices and
stored (408 and 410). A confirmation of the write is sent to
either a primary storage device or a controller that is manag-
ing the storing of the data. Once each storage device has
acknowledged that the data has been successfully written
and/or committed to memory, the end user is notified that the
write I/O request was successful (412). As the acknowledge-
ment of the write I/O request is based upon all of these
operations completing, the time between receiving the /O
request and the acknowledgement is directly proportional to
how long these operations take to complete. Any reduction in
the time for these operations to complete translates into
quicker acknowledgment times.

10

15

20

25

30

35

40

45

50

55

60

65

6

After the data has been committed, various other file sys-
tem operations can operate on this data in an asynchronous
fashion compared to the end user’s use of the data. In other
words, the stored data can be manipulated independently of
the end user’s use of the file system. Recycling, garbage
collection, and transformation are all examples of operations
that can occur asynchronously (414). For example, as part of
recycling, each data block that is written back to the file
system can be transformed prior to being written back (416).
These transformations are efficient in regard to I/O operations
as during recycling reading and writing /O operations are
already being performed. Thus, any transformation done to
data does not require additional I/O operations.

FIG. 5 illustrates a flow diagram of a transformation pro-
cess in accordance with various implementations. The trans-
formation process 500 can be integrated with the recycling
processes described above. The process 500 can be imple-
mented on a computing device. In one implementation, the
process 500 is encoded on a computer-readable medium that
contains instructions that, when executed by a computing
device, cause the computing device to perform operations of
process 500.

During recycling, transformation of in-use blocks can be
accomplished. While transformation does not require addi-
tional I/O requests when done in combination with recycling,
transformation does require the use of additional computing
resources. For example, transformations can utilize the CPU,
memory, and/or other storage system components. In some
implementations, transformations will not be attempted
based upon resources of the storage system. For example, if
the CPU usage, memory usage, a combination of the two, etc.,
of a system where recycling is being performed is below a
threshold, transformations will be performed. Otherwise,
transformations will not be attempted during the current recy-
cling process. Future recycling processes, however, can
attempt transformations if the CPU usage is below the prede-
termined threshold. As another example, incoming write
requests can be measured. If the number of write requests is
high, indicating that throughput demand is high, transforma-
tions can be skipped. Accordingly, storage system resources
can be analyzed to determine if transformations will be
attempted. Thus, the storage system can determine if trans-
formations will be attempted (502).

During recycling, data blocks are examined and it is deter-
mined if the data block is still being used by one or more end
users (504). Whether a particular data block is in use can be
determined as described above in regard to recycling and/or
garbage collection. Ifa block is in use, the storage system next
determines if a transformation of the data should be attempted
(506). Similarly to the entire transformation process, system
resources can be used to determine if a transformation should
be attempted. Metadata associated with the data block can
also be used. For example, if transformation consists of a
single recompression algorithm, a bit indicating that recom-
pression has previously happened can be used. In this imple-
mentation, only data blocks that have not already had recom-
pression attempted will be transformed. As another example,
the transformation can consist of a single compression or
encryption algorithm. Once the data is compressed and/or
encrypted, the metadata can be updated to indicate that com-
pression and/or encryption has previously been done. Once a
transformation is to be done, the type of transformation is
determined (508). For example, a particular compression
algorithm can be selected based upon previously attempted
compression algorithms. The selected transformation can
then be used to transform the data of'the data block (510). The
results of the transformation can then be analyzed. For

US 9,423,964 B1

7

example, if a data block is recompressed, the size of the
recompressed data block can be compared to the size of the
original data block. Only if the recompressed data block is
smaller in size is the transformed data block written to stor-
age. Finally, the transformed data block can then be written to
storage as part of the recycling process (512).

As described above, transformation of data can occur dur-
ing the recycling process. In these implementations, transfor-
mation is done without requiring any additional I/O requests.
There are various transformations that can occur.

Compression is one example of a transformation. In vari-
ous implementations, data is written to the storage system
without any file system level compression. During recycling,
the data can be compressed prior to being written back to disk.
A flag can be used to indicate that the data is compressed such
that no further compression is attempted on the data block
during future recycling processes.

A storage system can dynamically monitor resources and
update parameters of the storage system. For example, if the
write times are above a predetermined threshold, compres-
sion of the data during the initial write can be turned off. Once
write times drop below another threshold for a period of time,
the initial compression can be turned back on.

Different compression algorithms can also be used. For
example, two or more different compression algorithms can
be used to attempt to compress a data block. In one imple-
mentation each compression algorithm can be used during a
single recycling process to determine the best compression
method based upon the smallest compressed size of the data
block. Metadata indicating which compression algorithm is
used can be stored and associated with the data block. This
metadata can be used during a read operation to uncompress
the data.

In another implementation, each data block is attempted to
be compressed using two or more different compression algo-
rithms. During the recycling process, metadata associated
with a data block can be used to determine what compression
algorithm should be attempted next. If all of the compression
algorithms have been tried, no further compression transfor-
mations are attempted. In another implementation, metadata
that identifies the type of data stored is used to select a com-
pression algorithm. For example, if the metadata indicates
that the data stored is associated with a text file, .html file,
non-binary content, etc., a compression algorithm that is both
efficient and effective in compressing the data type is selected
and used. In another implementation, the metadata can indi-
cate how much the current data is compressed. If the com-
pression of the data is less than a predetermined threshold,
e.g., 50%, recompression can be attempted. Otherwise, the
data block can be ignored in regard to transformation. In
addition, the usage of the data type and the level of compres-
sion can be used together. For example, binary data that is
compressed by more than 5% can be considered adequate to
avoid trying other compression algorithms, while text data
that is compressed by more than 75% can be considered
adequate to skip attempting recompression.

The storage system can also do an initial compression of
data as part of the initial write of the data to the storage
system. Then during recycling, additional compression algo-
rithms can be attempted as described above.

Transformation is not limited to compression. As another
example, decompression can be a transformation. The stor-
age system can monitor its historical usage. For example, the
storage system can monitor the average CPU load, read
latency, etc. If the read latency, CPU usage, and/or other
system statistic indicate that data reads are taking too long,
e.g., the read latency is above a predetermined threshold, data

10

25

35

40

45

60

8

can be decompressed. For example, during recycling data can
be decompressed completely to alleviate the slowdown.
Alternatively, the data can be decompressed and recom-
pressed with a compression algorithm whose decompression
is less resource intensive. Accordingly, after the recycling
process completes some or all of the stored data can be read
faster based upon the data being decompressed or com-
pressed with an algorithm whose decompression is less
resource intensive. As noted above, this transformation can be
done during recycling without the cost of any additional I/O
requests.

Another example of transformation is encryption. Data can
initially be stored either unencrypted or with a fast, but less
robust encryption algorithm. During recycling, the data can
be decrypted and reencrypted using a more robust encryption
algorithm. In another implementation, data can be decrypted
and reencrypted using new security parameters. For example,
a new private key can be used to encrypt data. This allows a
security system to change its private and/or public/private key
pair without requiring that all data be decrypted and reen-
crypted at once.

Similar to decompression, decryption can also be a trans-
formation. For example, if data is encrypted using an encryp-
tion algorithm, the data can be changed to decrypted data. In
various implementations, system level parameters can be
used to determine if data should be decrypted. For example, if
write times are above a predetermined threshold and the CPU
usage of the system is high, data can be decrypted. Reading
unencrypted data is faster than encrypted data, as the data
does not need to be decrypted prior to returning the data. As
another example, a user may determine that the system should
no longer use encryption and turn the encryption feature off.
Rather than decrypting the entire storage at once, a decryption
transformation can be used to eliminate the use of encryption.

Encoding data is another example of a transformation. For
example, data can be encoded into a different coding. In one
implementation, videos encoded in one format can be
changed into another format. Another example is an image
encoded in one format that can be changed to another format
as part of the recycling process.

Multiple transformations can be accomplished at the same
time. For example, initially data can be written to disk without
any compression or encryption. During a single recycling
process, the data can be both compressed and encrypted as
described above. Storage system usage parameters can be
used to determine if multiple transformations can occur dur-
ing a single recycling process. For example, if the storage
system is being underutilized multiple transformations can be
done. Conversely, if the storage system is being moderately
utilized, a single transformation can be attempted, with a
second transformation being done during a future recycling
process.

One or more flow diagrams have been used herein. The use
of flow diagrams is not meant to be limiting with respect to the
order of operations performed. The herein-described subject
matter sometimes illustrates different components contained
within, or connected with, different other components. It is to
be understood that such depicted architectures are merely
examples, and that in fact many other architectures can be
implemented which achieve the same functionality. In a con-
ceptual sense, any arrangement of components to achieve the
same functionality is effectively “associated” such that the
desired functionality is achieved. Hence, any two compo-
nents herein combined to achieve a particular functionality
can be seen as “associated with” each other such that the
desired functionality is achieved, irrespective of architectures
or intermedial components. Likewise, any two components

US 9,423,964 B1

9

so associated can also be viewed as being “operably con-
nected,” or “operably coupled,” to each other to achieve the
desired functionality, and any two components capable of
being so associated can also be viewed as being “operably
couplable” to each other to achieve the desired functionality.
Specific examples of “operably couplable” include but are not
limited to physically mateable and/or physically interacting
components and/or wirelessly interactable and/or wirelessly
interacting components and/or logically interacting and/or
logically interactable components.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to inventions containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should typically be interpreted to mean “at least one” or “one
or more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two recita-
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least
oneof A, B, or C, etc.” is used, in general such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of'A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”

10

15

20

25

30

35

40

45

50

55

60

65

10

The foregoing description of illustrative implementations
has been presented for purposes of illustration and of descrip-
tion. It is not intended to be exhaustive or limiting with
respect to the precise form disclosed, and modifications and
variations are possible in light of the above teachings or may
be acquired from practice of the disclosed implementations. It
is intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.

What is claimed is:

1. A storage system comprising:

one or more electronic processors configured to:

receive a request from one user of the storage system to
store data in the storage system, wherein the request
comprises data, and wherein the data comprises a data
block;

determine if an initial compression should occur due to
parameters of the storage system;

write the data block to the storage system prior to a
recycle operation;

determine that transformations of data of the storage
system should be attempted;

determine the data block is in use by at least one user of
the storage system;

determine a transformation of the data block should be
done based upon the determination that the data block
is in use by at least one user of the storage system;

determine a transformation to be done to the data block
based upon the determination that the transformation
of the data block should be done;

transform the data block based upon the determined
transformation;

write the transformed data block to the storage system;
and

recycle, as part of the recycle operation, a portion of
storage space to free up space available for data writ-
ing, wherein the transformation is integrated into the
recycle operation, wherein the transformation
requires no additional input/output requests from the
recycle operation, and wherein the write the trans-
formed data block to the storage system is part of the
recycle operation.

2. The storage system of claim 1, wherein the storage
system uses a log-structured file system.

3. The storage system of claim 1, wherein the one or more
electronic processors are further configured to:

compress the data block using a first compression algo-

rithm based upon the determination that the initial com-
pression should occur, wherein the compressed data
block is the data bock written to the storage system prior
to the recycle operation.

4. The storage system of claim 3, wherein the determined
transformation is compression using a second, different com-
pression algorithm, and wherein to transform the data block
the one or more electronic processors are configured to:

uncompress the data block using the first compression

algorithm; and

compress the data block using the second compression

algorithm.

5. The storage system of claim 4, wherein to transform the
data block the one or more electronic processors are config-
ured to:

compare the size of the compressed data block using the

second compression algorithm with the size of the com-
pressed data block using the first compression algo-
rithm; and

US 9,423,964 B1

11

determine the smallest compressed data block based upon
the comparison, wherein the smallest compressed data
block is written to the storage system as part of the
recycling.

6. The storage system of claim 3, wherein the one or more
electronic processors are further configured to:

determine that a usage level of storage system resources for

decompression of data is above a predetermined thresh-
old;

wherein to determine a transformation to be done to the

data block, the one or more electronic processors are

configured to:

determine a compression algorithm used to compress
the data block; and

determine a second compression algorithm that requires
less resources than the compression algorithm used to
compress the data block;

decompress the data block using the compression algo-
rithm used to compress the data block; and

compress the data block using the second compression
algorithm.

7. The storage system of claim 3, wherein the one or more
electronic processors are further configured to:

determine that a usage level of storage system resources for

decompression of data is above a predetermined thresh-
old, wherein the determined transformation is uncom-
pression;

wherein to transform the data block the one or more elec-

tronic processors are configured to decompress the data
block using a compression algorithm used to compress
the data block, wherein the decompressed data block is
written to the storage system as part of the recycling.

8. The storage system of claim 1,

wherein the data block written to the storage system prior

to the recycle operation is uncompressed.

9. The storage system of claim 8, wherein the determined
transformation is compression using a compression algo-
rithm, and wherein to transform the data block the one or
more electronic processors are configured to compress the
data block using the compression algorithm.

10. The storage system of claim 1, wherein the one or more
electronic processors are further configured to:

encrypt the data block using a first encryption key prior to

the write of the data block to storage, wherein the deter-
mined transformation is re-encryption;

decrypt the data block; and

encrypt the data block using a second, different, encryption

key.

11. The storage system of claim 1, wherein the one or more
electronic processors are further configured to:

encrypt the data block using a first encryption algorithm;

write the data block to the storage system prior to the

recycle operation;

wherein to determine a transformation to be done to the

data block, the one or more electronic processors are

configured to:

decrypt the data block based upon the first encryption
algorithm.

12. The storage system of claim 1, wherein the one or more
electronic processors are further configured to:

determine a second transformation to be done to the data

block;

transform the transformed data block based upon the sec-

ond transformation before the transformed data block is
written to the storage system.

10

15

20

25

30

35

40

45

50

65

12

13. A method comprising:

receiving a request from one user of the storage system to
store data in the storage system, wherein the request
comprises data, and wherein the data comprises a data
block;

determining if an initial compression should occur due to

parameters of the storage system;

write the data block to the storage system prior to a recycle

operation

determining, using one or more electronic processors, that

transformations of data of the storage system should be
attempted;

determining, using the one or more electronic processors,

the data block is in use by at least one user of the storage
system,

determining, using the one or more electronic processors,

that a transformation of the data block should be done
based upon the determination that the data block is inuse
by at least one user of the storage system;

determining, using the one or more electronic processors, a

transformation to be done to the data block based upon
the determination that the transformation of the data
block should be done;

transforming, using the one or more electronic processors,

the data block based upon the determined transforma-
tion;

writing, using the one or more electronic processors, the

transformed data block to the storage system; and

recycling, as part of the recycle operation, a portion of
storage space to free up space available for data writ-
ing, wherein the transformation is integrated into the
recycle operation, wherein the transformation
requires no additional input/output requests from the
recycle operation, and wherein the write the trans-
formed data block to the storage system is part of the
recycle operation.

14. The method of claim 13, wherein the storage system
uses a log-structured file system.

15. The method of claim 13, further comprising:

compressing the data block using a first compression algo-

rithm based upon the determination that the initial com-
pression should occur, wherein the compressed data
block is the data bock written to the storage system prior
to the recycle operation.

16. The method of claim 15, wherein the determined trans-
formation is compression using a second, difterent compres-
sion algorithm, and wherein transforming the data block com-
prises:

uncompressing the data block using the first compression

algorithm; and

compressing the data block using the second compression

algorithm.

17. The method of claim 16, wherein the transforming the
data block comprises:

comparing the size of the compressed data block using the

second compression algorithm with the size of the com-
pressed data block using the first compression algo-
rithm; and

determining the smallest compressed data block based

upon the comparison, wherein the smallest compressed
data block is written to the storage system as part of the
recycling.

18. The method of claim 13, wherein writing the data block
to the storage system prior to the recycle operation comprises
writing the data block as uncompressed data.

US 9,423,964 B1

13

19. A non-transitory computer-readable medium having
instructions stored thereon, the instructions comprising:

instructions to receive a request from one user of the stor-
age system to store data in the storage system, wherein
the request comprises data, and wherein the data com-
prises a data block;

instructions to determine if an initial compression should
occur due to parameters of the storage system;

instructions write the data block to the storage system prior
to a recycle operation;

instructions to determine that transformations of data
should be attempted;

instructions to determine that a data block is in use by at
least one user of the storage system;

instructions to determine that a transformation of the data
block should be done based upon the determination that
the data block is in use by at least one user of the storage
system,

10

14

instructions to determine a transformation to be done to the
data block based upon the determination that the trans-
formation of the data block should be done;

instructions to transform the data block based upon the
determined transformation;

instructions to write the transformed data block to the
storage system; and

instructions to recycle, as part of the recycle operation, a
portion of storage space to free up space available for
data writing, wherein the transformation is integrated
into the recycle operation, wherein the transformation
requires no additional input/output requests from the
recycle operation, and wherein the write the transformed
data block to the storage system is part of the recycle
operation.

20. The non-transitory computer-readable medium of

claim 19, wherein the storage system uses a log-structured file
system.

